
Spatial Agents Implemented in a Logical Expressible
Language

Frieder Stolzenburg, Oliver Obst, Jan Murray, Bj¨orn Bremer

Universität Koblenz-Landau, Fachbereich Informatik
Rheinau 1, D–56075 Koblenz, GERMANY

{stolzen,frvit,murray,moddy }@uni-koblenz.de

Abstract. In this paper, we present a multi-layered architecture for spatial
agents. The focus is laid on the declarativity of the approach, which makes agent
scripts expressive and well understandable. They can be realized as (constraint)
logic programs. The logical description language is able to express actions or
plans for one and more autonomous and cooperating agents for the RoboCup
(Simulator League). The system architecture hosts constraint technology for qual-
itative spatial reasoning, but quantitative data is taken into account, too.
The basic (hardware) layer processes the agent’s sensor information. An interface
transfers this low-level data into a logical representation. It provides facilities to
access the preprocessed data and supplies several basic skills. The second layer
performs (qualitative) spatial reasoning. On top of this, the third layer enables
more complex skills such as passing, offside-detection etc. At last, the fourth
layer establishes acting as a team both by emergent and explicit cooperation.
Logic and deduction provide a clean means to specify and also to implement
teamwork behavior.

1 Introduction

Naturally, tasks to be solved by a team of autonomous agents are many-sided and com-
plex. In order to achieve a goal, a single agent has to use a set of complementary sub-
tasks. On the one hand, some of these actions can be performed in a purely reactive
manner, meeting real-time requirements. On the other hand, tasks may require a certain
amount of planning and reasoning. So, we were led to the idea of combining both the
advantages of procedural and logic programming and decided on a hybrid system with
a layered architecture.

1.1 Implementing Agents in Logic

In contrast to other approaches that provide an architecture for (multi-)agent systems
(see e.g. [16, 24]), we use different logical and deductive formalisms not only as a spec-
ification language but also as an implementation language. Widespread in this context
is the use of a Belief-Desire-Intention (BDI) architecture (see e.g. [7]), which has been
originally specified by means of modal logics. A first-order axiomatization has been
proposed for this kind of architecture only recently [24]. However, it seems that it is not
actually used as implementation language there.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 481−494, 2000.
 Springer-Verlag Berlin Heidelberg 2000



We will now describe our system architecture and show how different deductive
processes—including constraint solving—can be used for the RoboCup [20]. The sys-
tem combines the BDI approach with a multi-layered architecture, allowing multiple
agents to perform collective actions. Nevertheless, each agent is autonomous and can
be implemented in a manner similar to (Constraint) Logic Programs (CLP) [15]. This
combines the advantages of being declarative and efficient to a certain extent.

The major goals of the RoboLog project, undertaken at the University of Koblenz,
Germany, are the following:

– A flexible, modular system architecture should be established, meeting the various
requirements for RoboCup agents. For example, on the one hand, agents have to
be able to react in real-time. But on the other hand, it is also desirable that more
complex behavior of agents can be programmed easily in a declarative manner.

– It should be possible to handle different representation formats of knowledge about
the environment. Information may be quantitative or qualitative in nature. There-
fore, we propose a deductive framework, that is expressible in plain first-order
logic (possibly plus constraint technology components), that integrates axiomatic
approaches in geometry, spatial constraint theories, and numerical sensor data.

– Agents should not only be able to act autonomously on their own, but also to coop-
erate with other agents. For this, we develop a multi-agent script language for the
specification of collective actions or intended plans that are applicable in a certain
situation. These scripts can be translated into logic programs in a straightforward
manner.

1.2 Outline of the Approach

In the following, we discuss our layered system architecture and the functionality of
the respective layers. Fig. 1 shows the complete architecture of RoboLog. The lowest
layer—the RoboLog kernel, which is implemented in C++—essentially is the interface
between the SoccerServer [9] and Prolog, since all other layers are implemented in this
logic programming language.

The basic layer hosts reactive behavior. It is implemented in the RoboLog Prolog
extension [21, 22]. This extension is an enhanced RoboCup SoccerServer interface for
ECLiPSe-Prolog [14]. Time critical tasks are handled within the RoboLog module, as
well as the exchange of data. The module provides the atomic SoccerServer commands
and some more complex actions. Hence already at this level, logic (programming) for-
malisms are available. Also position determination is settled in this layer (see Sect. 2.1).
It also provides more specific facilities, e.g. dribbling and ball interception. For these
actions, (almost) no spatial cognition is required.

Spatial cognition is the contents of the second layer. For example, players have to
recognize when passing the ball is possible or a player is offside. Many approaches
(see e.g. [8, 26]) propose purely qualitative reasoning, i.e. disregarding quantitative
information after it has been transferred into a qualitative representation. But this may
be too inexact and too vague sometimes. Since we use logic as connecting formalism
in all layers, we can access low-level data at all levels of abstraction. This implies,

482 F. Stolzenburg et al.



reasoning can be as exact as required. We will present our approach in more detail in
Sect. 3.

The last two layers host complex situations, possibly requiring teamwork, i.e.
single- or multi-agent plans. Nevertheless, the question remains whether teamwork
should be invoked explicitly by communication or whether it is sufficient and more
robust just to have implicit (emergent) teamwork. The current implementation implic-
itly exploits knowledge on other implementation of agents. With the exception of the
goalkeeper, they are clones of each other. Cooperative behavior may be required even
if the implementation details are different or not known. The problem is then, what
communication language can be used in this case. See also Sect. 5.2 on this topic.

Spatial Reasoning
Qualitative

Abilities
Higher, Complex

Basic Skills
and Perception

Behavior
Cooperative

RoboLog

Prolog

SoccerServer

Fig. 1. System Architecture of RoboLog.

2 Basic Abilities and Actions (Layer 1)

The lowest layer in our system architecture handles basic skills and perception of the
environment. The basic skills may be actions that can be performed immediately by the
agent, e.g. turning around, dashing, kicking the ball etc. In addition, we will allow more
complex actions in this layer, that do not need (qualitative) spatial reasoning.

Depending on the hardware used, perception of the environment, including self and
object localization is a complex task, requiring more or less processing. In the sim-
plest case, perception just means reading off the data from one of the agent’s sensors.
Note that we aim at having a (first-order) logic presentation for each agent. The logical
description language we are going to introduce allows agent programs (scripts) to be
written and interpreted in a manner similar to CLP.

483Spatial Agents Implemented in a Logical Expressible Language



Following the lines of [24], we distinguish two classes of predicates:ACTIONS a
andPERCEPTIONSp. When executed successfully, a perception predicatep returns the
requested data. We will assume, that this data is quantitative, i.e. some arguments of
the predicate are (real) numbers. For example, a perception predicatep may return the
distance to a certain landmark, measured in meters and given as a real number. The
main matter of an actiona is its side-effect, i.e. the performed action. Nevertheless, an
action predicate (except the primitive actions of the SoccerServer) also is assigned a
truth value, depending on the success or failure of the action. Note that the truth value
for all predicates is dependent on the actual timet, when the action or request for data
is executed.

In summary, the RoboLog interface provides the following functionality:

– For each agent, it requests the sensor data from the SoccerServer. By this, the
agents’ knowledge bases are updated periodically. If some requested information
about a certain object is currently not available (because it is not visible at the
moment), the most recent information can be used instead. Each agent stores infor-
mation about objects it has seen within the last 100 simulation time steps.

– This low-level data is processed in such a way that more complex and more pre-
cise information becomes available, such as global position information (see also
Sect. 2.1) or direct relations between objects with or without reference to the actual
agent. The relationis le f t(Ob j1,Ob j2), e.g., depends on the relative position of the
agent, whereasis between(Ob j1,Ob j2,Ob j3) is an agent independent property.

– Last but not least, Prolog predicates are provided that can be used to request the
current status of sensor information on demand. The data should be synchronized
with the SoccerServer, before an agent’s action is initiated.

2.1 Position Determination

An important piece of information for an agent is to know its own position. Therefore,
the RoboLog system provides an extensive library that makes precise object localization
possible. The whole procedure implemented in the RoboLog kernel is able to work
even when only little or inconsistent information is given. In particular, we employ the
method for mobile robot localization using landmarks stated in [4].

2.2 Basic Skills

Agents have to be able to move in their environment without collision. This is a ba-
sic requirement for many practical robot multi-agent systems. In the RoboCup scenario
agents should also be able to handle the ball. This means they must be able to run and
kick to a certain position, dribble with the ball etc. Another important task is ball inter-
ception. For this, an agent has to recognize and compute the ball trajectory in advance,
compute and go to the point where ball interception is possible, and stop the ball. This
is a macro task, which could be executed in a certain situation without any qualitative
reasoning.

A large set of low-level abilities for the RoboCup scenario is stated in [25]. There,
kicking, goal-tending and—as a sub-task—getting sight of the ball among others are

484 F. Stolzenburg et al.



considered as part of the low-level architecture of an agent. Of course, such tasks may
require deep computation. However, only quantitative data is used for these actions.
This is the reason why it is reasonable to classify these actions as basic skills. Never-
theless, more complex actions will require (deductive) reasoning. That is the contents
of the next layer (see Sect. 3).

In our system, the following basic skills (among others) are implemented (see also
[18] that also describes special skills of the goalkeeper):

– The agents can search for the ball, taking into account their knowledge about the
last time the ball was seen.

– Dashing and kicking to a certain position, regarding the agent’s condition and
avoiding obstacles is possible and (based upon these skills) also dribbling.

– Extrapolating the ball trajectory to a given time in the future enables the agents to
intercept opponent passes and block shots.

3 Qualitative Spatial Reasoning (Layer 2)

During a match, a human soccer player will enter a lot of different situations, in which
he has to decide what to do. In most of the cases, he will decide regarding former
experience, i.e. comparing his situation to situations he already handled before. Hence,
if we want to build a client, we have to provide the client with some situations and
connected actions. We decided to model situations with the help of qualitative relations
for two main reasons.

– The agent’s situation will almost never fit exactly into a stored situation pattern
(identified by its set of preconditions), so we have to parametrize and abstract the
patterns. A basic set of qualities can be very easily abstracted from the visual data
sent by the SoccerServer (see below). Thus the step from describing situations by
quantities with tolerances to using qualitative data is easily taken.

– We think thatqualitativespatial reasoning reflects the thoughts of a human player
more clearly than the use ofquantitativedata. Consider a human soccer player
who tries reaching the ball. He will think something like: the ball isclose enough,
or: a team-mate isnearer to the ball. Based on thesequalitativeperceptions he
decides whether to run towards the ball or stay where he is. He will not calculate
the trajectory of the ball and determine a set of coordinates at which he can intersect
it.

What we need in order to identify situations is the abstraction of quantitative data
onto a qualitative level. Therefore, we have another class of predicates—in addition to
the classes mentioned in Sect. 2—, namelyQUALITIES q. Qualitative predicates are
defined upon the quantitative perceptions via logical rules and constraints, e.g. thein-
front-of relation (1) (see below). But it may also be the case that there are qualitative
predicates or relations based on each other. In the latter case we speak of purely qual-
itative predicates or reasoning, e.g. the relationleft and in-front-of can be reduced to

485Spatial Agents Implemented in a Logical Expressible Language



the qualitative predicatesleft andin-front-of (2).

in- f ront-o f ← Dist > 0. (1)

le f t← Dir < 0.

le f t in- f ront-o f ← le f t∧ in- f ront-o f. (2)

For example, concerning the distance of an agent to the ball in the RoboCup scenario
only a few (qualitative) aspects are interesting. Thus, in RoboLog we only distinguish
few distances:close(the ball is in the kickable area),near (the agent is able to detect
much detail by its sensors),short (maximal shooting distance),far away(sensor data
become unreliable from this distance),remote(out of reach). Quantitative distance in-
tervals can be mapped to qualities. Concerning the other direction, chosen plan schemes
must be instantiated with quantitative data for the actual execution. A related work is
presented in [8]. There, reasoning on the qualitative level (alone) is provided. Fig. 2
illustrates the correspondence between quantitative and qualitative distances.

��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

1 m

kickable area

20 m

short distance

Fig. 2. Distances – quantitative and qualitative.

3.1 Constraint Reasoning

In the literature, many approaches for qualitative spatial reasoning are proposed. Most
of them rely on the Region Connection Calculus (RCC), see e.g. [3, 23]. On the one
hand, the advantage of qualitative information certainly is, that seemingly complex sit-
uations can be reduced to a few patterns of situations, and concentration on the relevant
portion of information is possible. On the other hand, a qualitative description may be
a too rough approximation of the reality, such that reasoning on a purely qualitative
level may become too vague. So the question remains, how can we make use of both
quantitative and qualitative information.

In most cases, if sensor data is available, it is a good idea to make use of the quanti-
tative data by just abstracting it to a qualitative level. Only in some cases, when no more
precise quantitative information is available, purely qualitative reasoning is necessary.
More precise knowledge should be preferred. So, we combine real-time quantitative

486 F. Stolzenburg et al.



reasoning with qualitative spatial reasoning, that can be implemented as a constraint
system (in the formal sense) and integrated in a more general deductive framework for
constraint logic programming (CLP).

The process of spatial reasoning has to be seen in the context of its purpose, that
is laying the basis for what action should be performed next. There are (at least) two
decision problems in this context:

– If there are different sources of information (e.g. numerical sensor data, derived
qualitative knowledge or conclusions thereof), there must be some control mecha-
nism for deciding how the requested information should be obtained. In our current
implementation, quantitative data is preferred: it is simply converted into a qualita-
tive presentation. There are only very rare cases where purely qualitative reasoning
is performed. This could mean applying the transitivity rule to topological relations
such asbetween.

– In addition, it may be difficult to decide what should be done next in a situation
where we have several options (e.g. dribbling, passing, kicking). In the current
implementation, we simply make use of the backtracking facilities of Prolog for
this purpose. However, it might be a good idea to employ defeasible reasoning in
this decision process [11].

3.2 An Axiomatic Approach

We are also investigating the problem of modelling certain situations as patterns by
means of logic programs and the full first-order theorem proving system Protein [2]. For
example, passing the ball is possible in a situation where one player has the ball, another
player can be reached and there is no player (of the opposite team) in between. We
modelled these situations on top of the logical relationsleft, right andbetween. Since
we use logic, the properties of the qualities have to be axiomatized. Two possibilities
come into mind: we can modelbetweenon top of general geometric axioms [5], or use
collinear as basic concept [12]. We believe that it is more natural to use (an ordered
version of)betweenas base relation, since we can assume that the sensor data provides
information about order anyway. In addition, the order information may be required for
planning certain actions in detail.

However, for axiomatic approaches in general, there is one problem: how can the
negative information be deduced, e.g. if we want to know that there is no opponent in
between. With Prolog alone this is not possible: the built-in negation as failure some-
times causes problems if used in complex queries. So we were led to use full first-order
logic with the Protein theorem prover [2]. As example for this, let us consider the prob-
lem of determining whether passing is possible. This could be checked by the following
logical rule with negation in the rule body:

Passing←¬∃Opp: Between(Me,Opp,Partner)

The intended meaning of this rule is as follows: passing is possible, if there is no op-
ponent between the agent and one of its partners. The question is: how should negation
(¬) and existential quantification (∃) be interpreted? Protein provides classical negation

487Spatial Agents Implemented in a Logical Expressible Language



as usual in first-order theorem proving. Existential quantification causes problems, if
treated by Skolemization, i.e. replacing existentially quantified variables by new con-
stant or function symbols, because then we have potentially infinitely many players.

Since we need real-time behavior, we just considered the finite domain of play-
ers visible for the agent in our implementation. This is closed world or constraint do-
main reasoning. By this, we get a complete and terminating system. Possibly, more
sophisticated kinds of non-monotonic negation can be used here in this context of
decision-finding. Note that, currently, this component is not yet integrated into the ac-
tual RoboLog Koblenz implementation, but has been used for axiomatizing situations
(see [6]).

4 Higher Abilities (Layer 3)

Many tasks require deeper reasoning, which can be expressed within a BDI agent ar-
chitecture [24]. In our context, aBELIEF b is a qualitative predicateq, its negation¬q
or a conjunction of beliefsb1∧b2. A GOAL g is either anachievementgoal !q or a test
goal ?q, whereq is a qualitative predicate. ADESIRE(or event)d is a goal or an action.
Now we can build rules for a certainSITUATION in form of scripts, writtend : b− i,
whered is a desire,b is a belief (identifying the precondition of the situation), andi is
theINTENTION (or, strictly speaking, the intended plan).

4.1 Intended Plans

The intended plan is a tree of desires. Edges outgoing from test goals are labeled with
yesor no and possibly a time-out delay. They realize alternatives in the plan. Depend-
ing on the truth value the agent follows different paths. Edges labeled with a time-out
serve to delay the predicate. The agent only follows the labeled edge, if the respective
truth value holds at a time within the time-out interval. An achievement goal has to be
performed actively by the actor. The actual execution of an intended plan sometimes
makes it necessary to leave the abstract level of qualitative reasoning and operate on
quantitative data.

If an action or achievement goal fails or an external interruption occurs (e.g. a ref-
eree message in the RoboCup scenario), the agent has to return to adefault plan, which
must be applicable without precondition.

4.2 Example 1: The Goalie Runs Home

Let us now consider an example for such an agent script. When the ball is in the oppo-
nent half of the field, the goalkeeper of RoboLog Koblenz moves to his home position
and waits there in order to regain stamina. This means, if the goaliebelievesthat the
ball is in the opponent half, hisdesireis to be at his home position. So he executes the
intended planto run there. Figure 3 (a) shows the respective script. In order to execute
this script, the agent has to further decompose the desireRunto(home) as shown in
Figure 3 (b).

Let us now take a deeper look at the three desires of the second intended plan in
Fig. 3 (b). Each of them shows a different aspect of the language.

488 F. Stolzenburg et al.



(a)
d : goalie go home
b :← in opponenthal f(ball)

Runto(home)

no

?Location(Sel f,home)

yes

∗

i :

(b)
d : Runto(pos)
b :← pos= home

Get dist and dir(pos)i :

turn(dir)

Run(dist)

Fig. 3.Scripts for the goalkeeper.

– Get dist and dir(home): The satisfaction of this desire realizes the transition from
thequalitativelevel to thequantitative. It takes a quality (home) as input and returns
quantitative values, namely the relative distance and direction of the home position
from the agent. The other desires operate on these quantities.

– turn(dir): This action belongs to the lowest level of our architecture. It is atomic in
the sense that it can be sent to the SoccerServer directly.

– Run(dist): This, finally, is a complex action. From the point of view of our agent
language, it is assumed to beatomic, too. But for actual execution, it has to be
decomposed into a series ofdashcommands.

5 Cooperative Behavior (Layer 4)

The description language introduced in Sect. 4 is only suitable for modelling single-
agent plans. But as we want to describe situations in which several agents have to coop-
erate, we will now extend the language to allow for the description of collective actions
and multi-agent plans.

In this context aDESIRE d is a goal or an action,indexed by a list of agents—the
actors—, which must satisfy the desire by performing some actions. Now the intended
plan i becomes an acyclic graph of desires with a designated start node. Its edges are
labeled with actors which must be a subset of the actors ind. Consider now all possible
subgraphs wrt. edges for a certain actor. It is required that this still is a tree with the start
node as root, where binary branching is only allowed after test nodes. These subgraphs
represent theROLE for the respective actor. Achievement goals are performed by the
indexed actors, while non-actors wait for the achievement until a certain time limit. So
for the latter such an achievement goal automatically becomes a test goal, normally
labeled with a certain time-limit.

489Spatial Agents Implemented in a Logical Expressible Language



���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

pass

dash

pass
2

1

Fig. 4. Double Passing Situation.

5.1 Example 2: Double Passing

Let us now consider an example for a collective action of agents, namely double pass-
ing. There are two actors in this situation: actor 1 kicks the ball to actor 2, then actor 1
runs towards the goal, and expects a pass from actor 2. This is illustrated in Fig. 4.
In order to initiate such an action, two agents simultaneously have to recognize their
respective roles in the current situation in their belief state. The beliefb for a double
passing situation can be described as follows: 1 and 2 are nearest neighbors belonging
to the same team, and player 1 has the ball. Player 2 must be clear, whereas an opponent
is near to 1 such that 1 cannot dribble straight on. The intended plani is then, that 1
passes the ball to 2 at first, then 1 runs towards the goal, and finally 2 passes the ball
to 1. The respective rule can be expressed as shown in Fig. 5.

d : DoublePassing1,2
b :← NearestNeighbor(1,2),

Close(1,ball),
Clear(1,2),
Between(1,Opp,goal)

2

21

1

no [Time-Limit]1,2yes

Run(1,goal)1 Dribble2

!Location(ball,1)2

?Between(Opp,1,goal)

!Location(ball,2)1i :

?

Fig. 5.Double Passing Script.

490 F. Stolzenburg et al.



While experimenting with an implementation of double passing, we noticed that the
main problem is that both actors simultaneously have to recognize their role, because
one of the agents possibly does not see the other agent. In this context, communication
(i.e. telling the other agent one’s desire) helps a lot. A cooperating partner could tell its
coordinates or even its whole own belief state. We made similar experiences with an
even simpler kind of action, namely simple passing.

5.2 Communication

As we stated earlier, it makes sense to allow communication between agents. It helps
them to recognize situations or their roles in them and thus reduces the complexity of
the agents’ reasoning and decision processes. But then another implementation decision
has to be made, namely which communication language to use.

A general approach for the exchange of knowledge between agents is the Knowl-
edge Query and Manipulation Language (KQML) [17]. However, if the domain of ap-
plication is restricted, KQML may be too general. But it allows reliable communication
between agents, even if their internal architecture is quite different or unknown for the
other agent, by providing a common syntax. Instead, we communicate Prolog predi-
cates directly. The advantage of this approach is, that no meta-logical interpretation of
received information is necessary. A disadvantage is that for a successful communica-
tion the agents have to know each other’s internal structure exactly. But this drawback
can be overcome by specifying a subset of the available predicates together with their
intended functionality as the communication language.

Thus, communication between the agents can be done by transmitting these predi-
cates together with the action the recipient is expected to take on them, i.e. execute them
as function. The goalkeeper, for example, could communicate his uniform-number to
his teammates by sayingassert(goalie nr(1)). The language is by its definition specific
to the domain, thus enabling efficient communication while maintaining the flexibility
of a more general language like KQML.

5.3 Translating Rules into CLP

We may distinguish several types of plans: basic plans with only one actor and complex
plans where there are more than one actors. The former plans implement higher abilities
(layer 3), while the latter realize teamwork (layer 4). Each BDI script can be translated
into a CLP rule in a straightforward manner. For each achievement or test goal we
introduce new symbols: !P and ?P. For each rule some default recipes are introduced:

P(x1, . . . ,xn)← !P(x1, . . . ,xn).
?P(x1, . . . ,xn)← P(x1, . . . ,xn).

The former and external events update predicates; this is the main difference to
CLP. An approach that can handle external events and concurrency isConGolog[10].

491Spatial Agents Implemented in a Logical Expressible Language



For each situation and for each role in it, a BDI script can be translated directly into a
logic program rule, possibly with concurrent constraints (belief conditions):

d← b∧ i

The reader may have noticed that a situation withn roles corresponds ton CLP
rules. These rules are identical wrt. their headsd. The preconditionsb for the actions
are also very similar; they only differ in their actor role. The last (but not least) parti is
really different, because each actor plays a different role in the respective situation. For
example, the instantiated plans for both actors of the double passing rule (see Fig. 5)
are as follows:

Role1 Role2
!Location(ball,2) ?Location(ball,Sel f)
Run(Sel f,goal) Dribble
?Between(Opp,Sel f,goal) ?Between(Opp,1,goal)
?Location(ball,Sel f) !Location(ball,1)

Recall that achievement goals are converted into test goals for non-actors. In addi-
tion, the control sequence for giving up after some time-limit is not shown here. Clearly,
the translation into several CLP rules increases the time complexity for deciding which
action or role therein is performed next. This problem can at least be partially over-
come by communicating the next action directly to partners. In fact, we do this in our
implementation by sending calls to Prolog predicates. But nevertheless, robustness of
the whole system (of agents) has to be guaranteed in the case of failing actions or failing
communication.

6 Conclusions

We presented a logical description language for multi-agent systems, following the lines
of [24]. This language can be understood as a generalization of CLP. Both, quantitative
and qualitative spatial reasoning can be built-in. With the script language proposed
here, it is possible to express multi-agent plans. The RoboLog system provides a clean
means for programming soccer agents declaratively. We conducted several test games
with different scores on our local network—a 100 MBit Ethernet—and participated in
RoboCup-99 (see also the team descriptionRoboLog Koblenzin this volume).

6.1 Other Approaches with Logic Programming

Despite of the fact, that there are many logic-based approaches to agent programming in
the literature, there are only few systems that are implemented with logic programming
and that participated in the RoboCup. So, it seems that almost no team employs one
of the well-known planning techniques in artificial intelligence (e.g. with the situation
calculus [10]).CS Freiburg—the world champion of the middle-size league in 1997—
makes use of path planning [13], but emphasizes the need of reliable basic skills. In this
approach, path planning is restarted again every few milliseconds.

492 F. Stolzenburg et al.



As mentioned in the introduction (Sect. 1), [24] proposes a framework that allows
agent programs to be written and interpreted in a manner similar to that of Horn-clause
logic programs. Nevertheless, only single-agent actions can be specified within this
approach. The team described in [16] participated in RoboCup-98. The architecture
of this system is layered (as ours) and hosts a behavior-based, a local planning, and a
social planning layer. The system is implemented withOz, a concurrent constraint logic
programming language.

Another interesting approach is presented in [19]. There, an architecture for intel-
ligent agents (with application to the RoboCup simulation league) is described, using
the so-called organic programming languageGaea. It provides dynamic rearrangement
of programming modules and multi-threading among other features. This, of course, is
needed in a dynamic context as robotic soccer: when the system predicts or detects a
change in the environment, it can swap some portion of its program accordingly.

6.2 Future Work

Further work should concentrate on the real-time requirements in exceptional situations
and the concurrency of different mechanisms for information acquisition. The robust-
ness of the decision process can be improved by means of defeasible reasoning [11]
and/or organic programming [19]. Another area of research is how far logical mecha-
nisms can be used within the lower levels of our approach. Deduction could be used
to build a more complete view of the agent’s world model. The application of these
techniques to real robots is one of the next steps of our research activities. Finally, the
specification of a flexible communication language should also be investigated.

References

[1] M. Asada and H. Kitano, editors.RoboCup-98: Robot Soccer WorldCup II. LNAI 1604.
Springer, Berlin, Heidelberg, New York, 1999.

[2] P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension INter-
face. In A. Bundy, editor,Proceedings of the 12th International Conference on Automated
Deduction, LNAI 814, pages 769–773, Nancy, 1994. Springer, Berlin, Heidelberg, New
York.

[3] B. Bennet, A. G. Cohn, and A. Isli. Combining multiple representations in a spatial rea-
soning system. InProceedings of the 9th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’97), pages 314–322, Newport Beach, CA, 1997.

[4] M. Betke and L. Gurvits. Mobile robot localization using landmarks.IEEE Transactions
on Robotics and Automation, 13(2):251–263, Apr. 1997.

[5] K. Borsuk and W. Szmielew.Foundations of Geometry. North-Holland, Amsterdam, 1960.
[6] B. Bremer. Erkennung von Paß- und Abseitssituationen mit r¨aumlichem Schließen. Studi-

enarbeit S 570, Fachbereich Informatik, Universit¨at Koblenz, 1999.
[7] H.-D. Burkhard, M. Hannebauer, and J. Wendler. Belief–desire–intention – deliberation in

artificial soccer.AI Magazine, pages 87–93, 1998.
[8] E. Clementini, P. Di Felice, and D. Hern´andez. Qualitative representation of positional

information.Artificial Intelligence, 95(2):317–356, 1997.
[9] E. Corten, K. Dorer, F. Heintz, K. Kostiadis, J. Kummeneje, H. Myritz, I. Noda, J. Riekki,

P. Riley, P. Stone, and T. Yeap.Soccerserver Manual, 5th edition, May 1999. For Soc-
cerserver Version 5.00 and later.

493Spatial Agents Implemented in a Logical Expressible Language



[10] G. De Giacomo, Y. Lesp´erance, and H. J. Levesque. Reasoning about concurrent execution,
prioritized interrupts, and exogenous actions in the situation calculus. In M. E. Pollack,
editor, Proceedings of the 15th International Joint Conference on Artificial Intelligence,
pages 1221–1226, Nagoya, Japan, 1997. Volume 2.

[11] J. Dix, F. Stolzenburg, G. R. Simari, and P. R. Fillottrani. Automating defeasible reason-
ing with logic programming (DeReLoP). In S. J¨ahnichen, editor,Proceedings of the 2nd
German-Argentinian Workshop on Information Technology, pages 39–46, K¨onigswinter,
1999. To appear.

[12] C. Eschenbach and L. Kulik. An axiomatic approach to the spatial relations underlyingLeft-
Right and in Front of–Behind. In G. Görz and S. H¨olldobler, editors,KI-97: Advances in
Artificial Intelligence — Proceedings of the 21st Annual German Conference on Artificial
Intelligence, LNAI 1303, pages 207–218, Freiburg, 1997. Springer, Berlin, Heidelberg,
New York.

[13] J.-S. Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor, T. Weigel, and
B. Welsch. The CS Freiburg robotic soccer team: Reliable self-localization, multirobot
sensor integration and basic soccer skills. In Asada and Kitano [1], pages 93–108.

[14] International Computers Limited and IC-Parc.ECLiPSe User Manual / Extensions User
Manual – Release 4.0, 1998. Two volumes.

[15] J. Jaffar and M. J. Maher. Constraint logic programming: a survey.Journal of Logic
Programming, 19/20:503–581, 1994.

[16] C. G. Jung. Layered and resource-adapting agents in the RoboCup simulation. In Asada
and Kitano [1], pages 207–220.

[17] Y. Labrou and T. Finin. A proposal for a new KQML specification. Technical Report
TR CS-97-03, Computer Science and Electrical Engineering Department, University of
Maryland Baltimore County, Baltimore, MD 21250, Feb. 1997.

[18] J. Murray. My goal is my castle — Die h¨oheren F¨ahigkeiten eines RoboCup-Agenten am
Beispiel des Torwarts. Studienarbeit S 564, Fachbereich Informatik, Universit¨at Koblenz,
1999.

[19] H. Nakashima and I. Noda. Dynamic subsumption architecture for programming intelligent
agents. InProceedings of the International Conference on Multi-Agent Systems, pages 190–
197. AAAI Press, 1998.

[20] I. Noda. Soccer server: a simulator for RoboCup. InJSAI AI-Symposium, 1995.
[21] O. Obst. RoboLog – An ECLiPSe-Prolog SoccerServer interface: Users manual, March

1998.
[22] O. Obst. RoboLog: Eine deduktive Schnittstelle zum RoboCup Soccer Server. Diplomar-

beit D 488, Fachbereich Informatik, Universit¨at Koblenz, 1999.
[23] D. A. Randel, Z. Cui, and A. G. Cohn. A spatial logic based on regions and connections.

In Proceedings of the third Int. Conf. on Knowledge Representation and Reasoning, pages
165–176, San Mateo, 1992. Morgan Kaufmann.

[24] A. S. Rao. AgentsSpeak(L): BDI agents speak out in a logical computable language. In
W. van de Velde and J. W. Perrame, editors,Agents Breaking Away – 7th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World, LNAI 1038, pages 42–55,
Berlin, Heidelberg, New York, 1996. Springer.

[25] P. Stone, M. Veloso, and P. Riley. The CMUnited-98 champion simulator team. In Asada
and Kitano [1], pages 61–76.

[26] K. Zimmermann and C. Freksa. Qualitative spatial reasoning using orientation, distance,
and path knowledge.Applied Intelligence, 6:49–58, 1996.

494 F. Stolzenburg et al.


	1 Introduction
	1.1 Implementing Agents in Logic
	1.2 Outline of the Approach

	2 Basic Abilities and Actions (Layer 1)
	2.1 Position Determination
	2.2 Basic Skills

	3 Qualitative Spatial Reasoning (Layer 2)
	3.1 Constraint Reasoning
	3.2 An Axiomatic Approach

	4 Higher Abilities (Layer 3)
	4.1 Intended Plans
	4.2 Example 1: The Goalie Runs Home

	5 Cooperative Behavior (Layer 4)
	5.1 Example 2: Double Passing
	5.2 Communication
	5.3 Translating Rules into CLP


	6 Conclusions
	6.1 Other Approaches with Logic Programming
	6.2 FutureWork

	References

