Harmony Perception, Periodicity Detection, and Neural Transformation

Frieder Stolzenburg

Harz University of Applied Sciences, Automation and Computer Sciences
Department, Friedrichstr. 57-59, 38855 Wernigerode, Germany

E-Mail: fstolzenburg@hs-harz.de
WWW: www.hs-harz.de/fstolzenburg

▲ Hochschule Harz
Harz University of Applied Sciences
Motivation

■ **Question**: What happens when one listens to music, in particular musical harmonies?

■ **Claim**: Periodicity detection helps understand this. There is empirical and neurophysiological evidence.

Outline

A. Harmony Perception by Periodicity Detection

B. Periodicity Detection by Neural Transformation

C. Ongoing Activities
A. Harmony Perception by Periodicity Detection

B. Periodicity Detection by Neural Transformation

C. Ongoing Activities
1 Introduction

2 The Periodicity-Based Method

3 Results and Evaluation

4 Conclusions
Motivation

- What are **underlying principles** of music perception?
- How can **perceived consonance/dissonance** of musical chords and scales be explained?
- Empirical analyses (by psychologists) reveal **preference ordering** wrt. pleasantness.
 - intervals: octave $< \text{perfect fifth} < \text{major third} < \text{tritone}$
 - triads: major $< \text{minor} < \text{diminished} < \text{augmented}$

\[
\begin{align*}
(a) \text{ major} & \quad (b) \text{ minor} & \quad (c) \text{ diminished} & \quad (d) \text{ augmented} \\
(\text{Western music) scales: major (Ionian)} & \quad (\text{minor (Aeolian})
\end{align*}
\]

(a) major (Ionian) (b) minor (Aeolian)
Main Contribution

- **Periodicity-based approach**: apply consistently recent results from psychophysics and neuroacoustics:
 1. Just noticeable difference (JND) between two pitches for humans is about 1% for musically important low frequency range → use respective tunings and frequency ratios.
 2. Periodicities of complex chords can be detected by the human (and animal) brain → determine periodicity pitch.

- **Aims and goal**:
 - Fully mathematical model for musical harmoniousness.
 - Applicable to harmonies in broad sense (chords, scales).
 - High correlation with empirical studies.
 - Regard results from psychophysics and neuroacoustics.
Related Works

- **Theories of harmony perception** (not complete):
 - Overtones, frequency ratios, gradus suavitatis (Euler, 1739) → purely mathematical models
 - Dissonance, roughness, and instability (Cook and Fujisawa, 2006): Harmony should be more than the summation of interval consonance (frequency domain).
 - Periodicity-based approaches and neuronal models (Langner, 1997; Ebeling, 2007, time domain)
 - Cognitive theories for chords (mainly triads) and scales (Johnson-Laird et al., 2012; Temperley and Tan, 2013)

- **Existing explanations** for harmony perception
 - do not correlate too well with empirical rankings (overtones, dissonance curves, roughness, etc.), or
 - have restricted explanatory power (cognitive models assume principles of tonal music, e.g. existence of diatonic scales or common use of the major triad).
Overview

1. Introduction
2. The Periodicity-Based Method
3. Results and Evaluation
4. Conclusions
Introduction

The Periodicity-Based Method

Results and Evaluation

Conclusions
Computing Periodicity

- **Example:** major triad (e.g. A–C#–E)
 - semitones \{0, 4, 7\}, frequency ratios \{\frac{1}{1}, \frac{5}{4}, \frac{3}{2}\}, \(f_i \sim 4:5:6\)
 - \(\sin(\omega_1 t) + \sin(\omega_2 t) + \sin(\omega_3 t)\) \(\omega_i = 2\pi f_i\)

Sinusoids of Major Triad

1.
2.
3.

Introduction
The Periodicity-Based Method
Computing Periodicity
Rational Tunings
Formal Definitions
Results and Evaluation
Conclusions
Superposition and Periodic Structure of Sinusoids

- **Relative periodicity** $h = \text{approximated ratio of the period length of the chord relative to the period length of its lowest tone component:}$
 - corresponds to least common multiple of denominators,
 - here: $h = \text{lcm}(1, 4, 2) = 4$, and
 - does not change if harmonic overtones are present.
- **Hypothesis:** Perceived consonance of harmony decreases as relative (logarithmic) periodicity h increases.
Rational Tunings

- **Periodicity detection** requires (small) integer ratios for the frequencies (employ Stern-Brocot tree for computation).
- **Equal temperament**: \(f_k = \sqrt[12]{2}^k \) (k-th semitone)
 all keys sound equal \(\sim \) reference system.
- **Rational tunings** apply JND \(\approx 1\% \) (#1), 1.1% (#2), others not, e.g. Pythagorean, Kirnberger III.

Table of Relative Frequencies

<table>
<thead>
<tr>
<th>Interval</th>
<th>(k)</th>
<th>Equal temperament</th>
<th>Pythagorean</th>
<th>Rational tuning #1</th>
<th>Rational tuning #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unison</td>
<td>0</td>
<td>1.000</td>
<td>1/1 (0.00%)</td>
<td>1/1 (0.00%)</td>
<td>1/1 (0.00%)</td>
</tr>
<tr>
<td>Minor second</td>
<td>1</td>
<td>1.059</td>
<td>256/243 (-0.56%)</td>
<td>16/15 (0.68%)</td>
<td>16/15 (0.68%)</td>
</tr>
<tr>
<td>Major second</td>
<td>2</td>
<td>1.122</td>
<td>9/8 (0.23%)</td>
<td>9/8 (0.23%)</td>
<td>9/8 (0.23%)</td>
</tr>
<tr>
<td>Minor third</td>
<td>3</td>
<td>1.189</td>
<td>32/27 (-0.34%)</td>
<td>6/5 (0.91%)</td>
<td>6/5 (0.91%)</td>
</tr>
<tr>
<td>Major third</td>
<td>4</td>
<td>1.260</td>
<td>81/64 (0.45%)</td>
<td>5/4 (-0.79%)</td>
<td>5/4 (-0.79%)</td>
</tr>
<tr>
<td>Perfect fourth</td>
<td>5</td>
<td>1.335</td>
<td>4/3 (-0.11%)</td>
<td>4/3 (-0.11%)</td>
<td>4/3 (-0.11%)</td>
</tr>
<tr>
<td>Tritone</td>
<td>6</td>
<td>1.414</td>
<td>729/512 (0.68%)</td>
<td>17/12 (0.17%)</td>
<td>7/5 (-1.01%)</td>
</tr>
<tr>
<td>Perfect fifth</td>
<td>7</td>
<td>1.498</td>
<td>3/2 (0.11%)</td>
<td>3/2 (0.11%)</td>
<td>3/2 (0.11%)</td>
</tr>
<tr>
<td>Minor sixth</td>
<td>8</td>
<td>1.587</td>
<td>128/81 (-0.45%)</td>
<td>8/5 (0.79%)</td>
<td>8/5 (0.79%)</td>
</tr>
<tr>
<td>Major sixth</td>
<td>9</td>
<td>1.682</td>
<td>27/16 (0.34%)</td>
<td>5/3 (-0.90%)</td>
<td>5/3 (-0.90%)</td>
</tr>
<tr>
<td>Minor seventh</td>
<td>10</td>
<td>1.782</td>
<td>16/9 (-0.23%)</td>
<td>16/9 (-0.23%)</td>
<td>9/5 (1.02%)</td>
</tr>
<tr>
<td>Major seventh</td>
<td>11</td>
<td>1.888</td>
<td>243/128 (0.57%)</td>
<td>15/8 (-0.68%)</td>
<td>15/8 (-0.68%)</td>
</tr>
<tr>
<td>Octave</td>
<td>12</td>
<td>2.000</td>
<td>2/1 (0.00%)</td>
<td>2/1 (0.00%)</td>
<td>2/1 (0.00%)</td>
</tr>
</tbody>
</table>
Formal Definitions

1. Assume that \(H = \{ f_1, \ldots, f_k \} \) is a rational harmony, \(f \) is the minimum of \(H \), and \(f_i/f = a_i/b_i \) for \(1 \leq i \leq k \) and coprime positive integers \(a_i \) and \(b_i \). Then \(h = \text{lcm}(b_1, \ldots, b_k) \) is called relative periodicity.

2. Logarithmic periodicity = \(\log_2(h) \)
 Rationales (cf. Langner, 1997):
 - logarithmic organisation of neuronal periodicity map (brain)
 - octave has frequency ratio \(2 \leftrightarrow \) base-2 logarithm

3. Let \(T' \) be a tuning (ratio function), \(S = \{ s_1, \ldots, s_n \} \) a set of \(n \) semitones, and \(H \) a measure of harmoniousness. Then, the value of \(H \) may be smoothed, by averaging over the shifted semitone sets of \(S \):
 \[
 \overline{H}(S) = \frac{1}{n} \sum_{i \in S} H(T'(S_i))
 \]

1 Introduction

2 The Periodicity-Based Method

3 Results and Evaluation

4 Conclusions
Approaches and Discussion

- **Properties of Periodicity:**
 - Harmonic overtones do not change periodicity.
 - Smoothing improves results.
 - Logarithmic periodicity for whole chromatic scale (12-TET):
 \[
 \log_2(h) \approx 7.4 < 8
 \]
 \[
 \approx \text{#octaves representable in neuronal periodicity map.}
 \]

- **Limitations:**
 - Empirical ratings take average over all participants \(\sim\) individual differences (culture, familiarity, training, etc.) are neglected.
 - Harmony is taken out of context (musical piece, history).
 - Studies focus on Western scales (twelve-tone system).
Consonance Rankings: Dyads

<table>
<thead>
<tr>
<th>Interval</th>
<th>Emp. rank</th>
<th>Roughness</th>
<th>Sonance factor</th>
<th>Similarity</th>
<th>Rel. periodicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unison</td>
<td>1</td>
<td>2 (0.0019)</td>
<td>1-2 (1.000)</td>
<td>1-2 (100.00%)</td>
<td>1-2 (1.0)</td>
</tr>
<tr>
<td>Octave</td>
<td>2</td>
<td>1 (0.0014)</td>
<td>1-2 (1.000)</td>
<td>1-2 (100.00%)</td>
<td>1-2 (1.0)</td>
</tr>
<tr>
<td>Perfect fifth</td>
<td>3</td>
<td>3 (0.0221)</td>
<td>3 (0.737)</td>
<td>3 (66.67%)</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Perfect fourth</td>
<td>4</td>
<td>4 (0.0451)</td>
<td>4 (0.701)</td>
<td>4 (50.00%)</td>
<td>4 (3.0)</td>
</tr>
<tr>
<td>Major third</td>
<td>5</td>
<td>6 (0.0551)</td>
<td>5 (0.570)</td>
<td>6 (40.00%)</td>
<td>6 (4.0)</td>
</tr>
<tr>
<td>Major sixth</td>
<td>6</td>
<td>5 (0.0477)</td>
<td>6 (0.526)</td>
<td>5 (46.67%)</td>
<td>4-5 (3.0)</td>
</tr>
<tr>
<td>Minor sixth</td>
<td>7</td>
<td>7 (0.0843)</td>
<td>7 (0.520)</td>
<td>9 (30.00%)</td>
<td>7-8 (5.0)</td>
</tr>
<tr>
<td>Minor third</td>
<td>8</td>
<td>10 (0.1109)</td>
<td>8 (0.495)</td>
<td>7 (33.33%)</td>
<td>7-8 (5.0)</td>
</tr>
<tr>
<td>Tritone</td>
<td>9</td>
<td>8 (0.0930)</td>
<td>11 (0.327)</td>
<td>8 (31.43%)</td>
<td>9 (6.0)</td>
</tr>
<tr>
<td>Minor seventh</td>
<td>10</td>
<td>9 (0.0998)</td>
<td>9 (0.449)</td>
<td>10 (28.89%)</td>
<td>10 (7.0)</td>
</tr>
<tr>
<td>Major second</td>
<td>11</td>
<td>12 (0.2690)</td>
<td>10 (0.393)</td>
<td>11 (22.22%)</td>
<td>12 (8.5)</td>
</tr>
<tr>
<td>Major seventh</td>
<td>12</td>
<td>11 (0.2312)</td>
<td>12 (0.242)</td>
<td>12 (18.33%)</td>
<td>11 (8.0)</td>
</tr>
<tr>
<td>Minor second</td>
<td>13</td>
<td>13 (0.4886)</td>
<td>13 (0.183)</td>
<td>13 (12.50%)</td>
<td>13 (15.0)</td>
</tr>
</tbody>
</table>

Correlation \(r \) : .967 .982 .977 .982

- **Empirical ranks**: Malmberg (1918); Schwartz et al. (2003)
- **High correlation** with empirical results \(\sim r > .9 \).
- **Many approaches yield good correl. results** for intervals:
 - percentage spectral similarity: Gill and Purves (2009)
 - roughness: Hutchinson and Knopoff (1978)
Consonance Rankings: Triads

<table>
<thead>
<tr>
<th>Chord class</th>
<th>Emp. rank</th>
<th>Roughness</th>
<th>Instability</th>
<th>Similarity</th>
<th>Rel. periodicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 4, 7}</td>
<td>1 (1.667)</td>
<td>3 (0.1390)</td>
<td>1 (0.624)</td>
<td>1-2 (46.67%)</td>
<td>2 (4.0)</td>
</tr>
<tr>
<td>{0, 3, 8}</td>
<td>5 (2.889)</td>
<td>9 (0.1873)</td>
<td>5 (0.814)</td>
<td>8-9 (37.78%)</td>
<td>3 (5.0)</td>
</tr>
<tr>
<td>{0, 5, 9}</td>
<td>3 (2.741)</td>
<td>1 (0.1190)</td>
<td>4 (0.780)</td>
<td>5-6 (45.56%)</td>
<td>1 (3.0)</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 3, 7}</td>
<td>2 (2.407)</td>
<td>4 (0.1479)</td>
<td>2 (0.744)</td>
<td>1-2 (46.67%)</td>
<td>4 (10.0)</td>
</tr>
<tr>
<td>{0, 4, 9}</td>
<td>10 (3.593)</td>
<td>2 (0.1254)</td>
<td>3 (0.756)</td>
<td>5-6 (45.56%)</td>
<td>7 (12.0)</td>
</tr>
<tr>
<td>{0, 5, 8}</td>
<td>8 (3.481)</td>
<td>7 (0.1712)</td>
<td>6 (0.838)</td>
<td>8-9 (37.78%)</td>
<td>10 (15.0)</td>
</tr>
<tr>
<td>Susp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 5, 7}</td>
<td>7 (3.148)</td>
<td>11 (0.2280)</td>
<td>8 (1.175)</td>
<td>3-4 (46.30%)</td>
<td>5 (10.7)</td>
</tr>
<tr>
<td>{0, 2, 7}</td>
<td>6 (3.111)</td>
<td>13 (0.2490)</td>
<td>11 (1.219)</td>
<td>3-4 (46.30%)</td>
<td>9 (14.3)</td>
</tr>
<tr>
<td>{0, 5, 10}</td>
<td>4 (2.852)</td>
<td>6 (0.1549)</td>
<td>9 (1.190)</td>
<td>7 (42.96%)</td>
<td>6 (11.0)</td>
</tr>
<tr>
<td>Dim.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 3, 6}</td>
<td>12 (3.889)</td>
<td>12 (0.2303)</td>
<td>12 (1.431)</td>
<td>13 (32.70%)</td>
<td>12 (17.0)</td>
</tr>
<tr>
<td>{0, 3, 9}</td>
<td>9 (3.519)</td>
<td>10 (0.2024)</td>
<td>7 (1.114)</td>
<td>10-11 (37.14%)</td>
<td>11 (15.3)</td>
</tr>
<tr>
<td>{0, 6, 9}</td>
<td>11 (3.667)</td>
<td>8 (0.1834)</td>
<td>10 (1.196)</td>
<td>10-11 (37.14%)</td>
<td>8 (13.3)</td>
</tr>
<tr>
<td>Augm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, 4, 8}</td>
<td>13 (5.259)</td>
<td>5 (0.1490)</td>
<td>13 (1.998)</td>
<td>12 (36.67%)</td>
<td>13 (20.3)</td>
</tr>
</tbody>
</table>

Correlation r
| .352 | .698 | .802 | .846 |

- **Empirical ranks:** Johnson-Laird et al. (2012)
- **Highest correlation** with empirical results in contrast to others including instability (Cook and Fujisawa, 2006).
- Logarithmic periodicity even correlates well to **ordinal ratings** ~ logarithmic periodicity map in the brain.
Consonance Rankings: Chords

- consider pentachord Emaj7/9
- standard in jazz music
- classically built from a stack of thirds
- highest ranked harmony with 5 out of 12 tones
- may be understood as the superposition of triads E and B
- tonic-dominant relationship according to classical harmony theory \(\rightsquigarrow \) chord progressions
- all shown harmonies rank among the top 5% in their respective tone multiplicity category
Consonance Rankings: Scales

Heptatonic Scales (Church Modes)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Semitones</th>
<th>Emp. rank</th>
<th>Similarity</th>
<th>Log. periodicity (Rational tuning #1)</th>
<th>Log. periodicity (Rational tuning #2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionian</td>
<td>{0, 2, 4, 5, 7, 9, 11}</td>
<td>1 (0.83)</td>
<td>3 (39.61%)</td>
<td>1 (6.453)</td>
<td>1 (5.701)</td>
</tr>
<tr>
<td>Mixolydian</td>
<td>{0, 2, 4, 5, 7, 9, 10}</td>
<td>2 (0.64)</td>
<td>6 (38.59%)</td>
<td>3 (6.607)</td>
<td>4 (5.998)</td>
</tr>
<tr>
<td>Lydian</td>
<td>{0, 2, 4, 6, 7, 9, 11}</td>
<td>3 (0.58)</td>
<td>5 (38.95%)</td>
<td>2 (6.584)</td>
<td>2 (5.830)</td>
</tr>
<tr>
<td>Dorian</td>
<td>{0, 2, 3, 5, 7, 9, 10}</td>
<td>4 (0.40)</td>
<td>2 (39.99%)</td>
<td>4 (6.615)</td>
<td>3 (5.863)</td>
</tr>
<tr>
<td>Aeolian</td>
<td>{0, 2, 3, 5, 7, 8, 10}</td>
<td>5 (0.34)</td>
<td>4 (39.34%)</td>
<td>5 (6.767)</td>
<td>7 (6.158)</td>
</tr>
<tr>
<td>Phrygian</td>
<td>{0, 1, 3, 5, 7, 8, 10}</td>
<td>6 (0.21)</td>
<td>1 (40.39%)</td>
<td>6 (6.778)</td>
<td>5 (6.023)</td>
</tr>
<tr>
<td>Locrian</td>
<td>{0, 1, 3, 5, 6, 8, 10}</td>
<td>7</td>
<td>7 (37.68%)</td>
<td>7 (6.790)</td>
<td>6 (6.033)</td>
</tr>
</tbody>
</table>

Correlation $r = .036$
Empirical ranks: Temperley and Tan (2013)

- **Empirical ranks**: Temperley and Tan (2013)
- Periodicity also works for scales, although tones do not sound simultaneously.
- **Church modes** are in the very front ranks of 462 scales with 7 out of 12 tones (for rational tunings).
- Percentage similarity (Gill and Purves, 2009) does not predict order, but is applicable to arbitrary tone scales.
Introduction

The Periodicity-Based Method

Results and Evaluation

Conclusions
Summary:

- Harmony perception can be explained well by considering the periodic structure of harmonic sounds.
- Computational model shows highest correlation with empirical results for harmonies in broad sense (dyads, triads, scales).
- Conclusion: There is a strong neuroacoustical and psychophysical basis for harmony perception including chords and scales.
- Correlation with neurophysiological data (Lee et al., 2015; Bidelman and Krishnan, 2009).

Further Information:
http://ai-linux.hs-harz.de/fstolzenburg/harmony/
References

A. Harmony Perception by Periodicity Detection

B. Periodicity Detection by Neural Transformation

C. Ongoing Activities
Introduction

Harmony Perception in the Brain

Periodicity Pitch Detection

Analysis and a Neural Network Model

Conclusions
Motivation

- An acoustic stimulus, e.g. a musical harmony, is transformed highly \textit{non-linearly} during the hearing process:
 - \textit{ear}: combination tones in inner ear (differences)
 - \textit{brain}: autocorrelation mechanism (Langner, 1997, 2015)
- In brainstem response, periodicity pitch (i.e. missing fundamental) is \textit{physically} present in frequency spectrum (EEG studies by Lee et al., 2009, 2015).
- \textbf{Research question}: How can this happen?
- \textbf{Running example}: perfect fifth (A2–E3, 110 and 166 Hz)
Overview

1. Introduction
2. Harmony Perception in the Brain
3. Periodicity Pitch Detection
4. Analysis and a Neural Network Model
5. Conclusions
1 Introduction

2 Harmony Perception in the Brain

3 Periodicity Pitch Detection

4 Analysis and a Neural Network Model

5 Conclusions
Lee et al. (2009, 2015) measure auditory brainstem responses to musical intervals (electric piano sound):

- **perfect fifth**: A₂–E₃, 110–166 Hz, frequency ratio 3:2
 - highest response in brainstem at about 55.3 ≈ 110/2 Hz
- **minor seventh**: F#₂–E₃, 93–166 Hz, frequency ratio 9:5
 - highest response in brainstem at about 18.5 ≈ 93/5 Hz

In both cases, the additionally occurring frequency coincides very well with the periodicity pitch frequency.

Frequency Spectra: (Lee et al., 2015, Fig. 1+5)
Trigger neurons in cochlear nucleus transfer signals without significant delay (spike trains).

Oscillator neurons with intrinsic oscillation \(n \cdot T \), base period \(T = 0.4 \text{ ms}, n \geq 2 \).

Integrator neurons in cochlear nucleus transfer periodic signals with (significant) delay.

Coincidence neurons (auditory midbrain) respond best when delay is compensated by signal period.

Summary: Periodicity can be detected in the brain (by comb-filtering).
1 Introduction

2 Harmony Perception in the Brain

3 Periodicity Pitch Detection

4 Analysis and a Neural Network Model

5 Conclusions
Possible Explanations

What are the relevant factors that lead to the occurrence of the periodicity pitch in the response spectrum of a signal?

Reasons for periodicity detection may be:

1. **autocorrelation** and phase-locking (Langner, 2015)
2. **distortion** → **combination tones** (Lee et al., 2015)
 \[f_1 - k \cdot (f_2 - f_1) \], given frequencies \(f_1 < f_2 \) and small \(k \)
3. **spiking**: transformation of input signal into pulse trains
 → maximal amplitude is limited by fixed uniform value

Explanations (except last one) introduce too few or too many combination tones in the frequency spectrum.
In the brain, **spikes** are created when the action potential crosses some threshold.

This is adopted in **theoretical model** proposed here: Transform input (blue) as in artificial neural networks.

A **sigmoidal activation function**, e.g. the logistic function, the hyperbolic tangent, or simply the sign function, is applied to the input (= signal over time).

By this, the input signal is transformed into a rectangular pulse train with **uniform maximal amplitude** (red).

[Graph showing spiking neuronal activity with blue input transformed into red rectangular pulse train.]

Spiking Neuronal Activity
Frequency spectra of perfect fifth:
- original signal (blue)
- its amplitude-limited response (red)

Periodicity pitch occurs physically in the real brainstem response (Lee et al., 2015, Figure 5) and in frequency spectrum predicted by our model.

Key point: non-linear, sigmoidal activation

Complex neural model or analysis (Lerud et al., 2014) is not required.
Results

- Stimulus is transformed in the brain, distortion is not heard however, but can be simulated

 perfect fifth – stimulus

 perfect fifth – distorted

- The response spectra explicitly contain as expected in addition to the original spectrum the **periodicity pitch frequency**, not arbitrary combination tones.

- The (new) peaks in the response spectrum are **sharper** the more pulse-like the transformed input is.

- The peaks at the periodicity pitch frequencies are **more salient** for more consonant harmonies. In this case, the periodicity pitch frequency is comparatively high (~ relative periodicity low).
1 Introduction

2 Harmony Perception in the Brain

3 Periodicity Pitch Detection

4 Analysis and a Neural Network Model

5 Conclusions

For the perfect fifth, both component signals coincide after an overall period of approximately 18.1 ms (blue).

The amplitude is not uniform at this point.

Whenever two pulses of different frequencies coincide, it has to be compensated (red).

Thus periodicity pitch present in amplitude-limited signal.
Recurrent artificial neural networks can generate periodic waveforms and also explain their perception.

Artificial neurons may be recursively connected, activation of each neuron changes over time.

If neurons x_1, \ldots, x_n are connected to neuron y, then:

$$y(t + \tau) = g(w_1 x_1(t) + \cdots + w_n x_n(t))$$

- w_1, \ldots, w_n are weights,
- τ discrete time constant, and
- g the activation function.

Two neurons suffice to generate (co)sine wave: just use 2D rotation matrix (cf. Stolzenburg et al., 2018).
1 Introduction

2 Harmony Perception in the Brain

3 Periodicity Pitch Detection

4 Analysis and a Neural Network Model

5 Conclusions
Final Remarks

■ **Summary:** Most important factor during the neural transformation for periodicity detection seems to be the spiking with uniform, limited amplitude.

■ That the periodicity pitch appears in the response spectrum and not arbitrary difference tones can be reproduced by Fourier analysis of amplitude-limited pulse trains (Matlab/Octave implementation).

References

A. Harmony Perception by Periodicity Detection

B. Periodicity Detection by Neural Transformation

C. Ongoing Activities
Planned Work

- More extensive studies and comparisons with real brainstem responses have to be done, not only comparison with empirical psychological experiments.
- PhD project HarPer – Harmony Perception (Maria Heinze), joint with Maastricht University, Netherlands, Faculty of Psychology and Neuroscience, since October 2017.
- EEG and fMRI studies about temporal and spatial activity in the brain during harmony perception are planned with complex harmonic sensations (≥ 2 tones in harmony).
Research Questions

1. Can the results of the EEG experiments for dyads by Lee et al. (2009, 2015) be reproduced?

2. Can the periodicity-based method (Stolzenburg, 2015) be confirmed by EEG experiments for dyads and triads?

3. Where in the brain does harmony perception take place? Are pitch and periodicity orthogonal dimensions in the tonotopic map in the brain?

Orthogonality of tonotopy and periodotopy in the inferior colliculus of the gerbil (mouse) demonstrated using a radiographic (2-deoxyglucose) technique (cf. Langner, 2015, Fig. 10.5).
Present participants isolated corresponding periodicity pitch frequencies in fMRI experiments.

How does harmony perception work in general? Can it be modeled by neural network models, e.g. recurrent predictive neural networks (Stolzenburg et al., 2018)?

Thank you very much for your attention!