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Overview

Motivation

Question: What happens when one listens to music, in
particular musical harmonies?

Claim: Periodicity detection helps understand this.
There is empirical and neurophysiological evidence.

Outline

A. Harmony Perception by Periodicity Detection

B. Periodicity Detection by Neural Transformation

C. Ongoing Activities
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Motivation

What are underlying principles of music perception?
How can perceived consonance/dissonance of musical
chords and scales be explained?
Empirical analyses (by psychologists) reveal preference
ordering wrt. pleasantness.

intervals: octave ≺ perfect fifth ≺ major third ≺ tritone
triads: major ≺ minor ≺ diminished ≺ augmented

G
(a) major

4̄¯¯ 6̄¯¯ ¯4̄¯

(b) minor

¯¯¯ ¯4̄¯4 ¯6̄¯

(c) diminished

6 ¯2̄¯ ¯4̄¯ ¯4̄¯4
(d) augmented

4 ¯4̄¯

(Western music) scales: major (Ionian) ≺ minor (Aeolian)

G
4444

(a) major (Ionian)
¯ ¯ ¯ ¯ ¯ ¯ ¯

(b) minor (Aeolian)
¯ ¯ ¯ ¯ ¯ ¯ ¯

� happy birthday – major version � � happy birthday – minor version �
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Main Contribution

Periodicity-based approach: apply consistently recent
results from psychophysics and neuroacoustics:

1 Just noticeable difference (JND) between two pitches for
humans is about 1% for musically important low frequency
range ; use respective tunings and frequency ratios.

2 Periodicities of complex chords can be detected by the
human (and animal) brain ; determine periodicity pitch.

Aims and goal:
Fully mathematical model for musical harmoniousness.
Applicable to harmonies in broad sense (chords, scales).
High correlation with empirical studies.
Regard results from psychophysics and neuroacoustics.

3 / 19



Harmony
Perception by

Periodicity
Detection

Frieder
Stolzenburg

Introduction
Motivation

Main Contribution

Related Works

Overview

The
Periodicity-
Based
Method

Results and
Evaluation

Conclusions

Related Works

Theories of harmony perception (not complete):
Overtones � overtones of guitar string � , frequency ratios, gradus
suavitatis (Euler, 1739) ; purely mathematical models
Dissonance, roughness, and instability (Cook and
Fujisawa, 2006): Harmony should be more than the
summation of interval consonance (frequency domain).
Periodicity-based approaches and neuronal models
(Langner, 1997; Ebeling, 2007, time domain)
Cognitive theories for chords (mainly triads) and scales
(Johnson-Laird et al., 2012; Temperley and Tan, 2013)

Existing explanations for harmony perception
do not correlate too well with empirical rankings
(overtones, dissonance curves, roughness, etc.), or
have restricted explanatory power (cognitive models
assume principles of tonal music, e.g. existence of diatonic
scales or common use of the major triad).

� chromatic and diatonic scale, major triad �
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Computing Periodicity

Example: major triad (e.g. A–C#–E)
semitones {0, 4, 7}, frequency ratios { 11 ,

5
4 ,

3
2 }, fi ∼ 4 :5 :6

sin(ω1t) + sin(ω2t) + sin(ω3t) ωi = 2πfi

Sinusoids of Major Triad

1

2

3
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Computing Periodicity (Continued)

Superposition and Periodic Structure of Sinusoids

Relative periodicity h = approximated ratio of the period
length of the chord relative to the period length of its
lowest tone component:

corresponds to least common multiple of denominators,
here: h = lcm(1, 4, 2) = 4, and
does not change if harmonic overtones are present.

Hypothesis: Perceived consonance of harmony decreases
as relative (logarithmic) periodicity h increases.
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Rational Tunings

Periodicity detection requires (small) integer ratios for the
frequencies (employ Stern-Brocot tree for computation).
Equal temperament: fk =

12√2 k (k -th semitone)
all keys sound equal ; reference system.
Rational tunings apply JND ≈ 1% (#1), 1.1% (#2),
others not, e.g. Pythagorean, Kirnberger III.

Table of Relative Frequencies
Interval k Equal temperament Pythagorean Rational tuning #1 Rational tuning #2
Unison 0 1.000 1/1 (0.00%) 1/1 (0.00%) 1/1 (0.00%)
Minor second 1 1.059 256/243 (-0.56%) 16/15 (0.68%) 16/15 (0.68%)
Major second 2 1.122 9/8 (0.23%) 9/8 (0.23%) 9/8 (0.23%)
Minor third 3 1.189 32/27 (-0.34%) 6/5 (0.91%) 6/5 (0.91%)
Major third 4 1.260 81/64 (0.45%) 5/4 (-0.79%) 5/4 (-0.79%)
Perfect fourth 5 1.335 4/3 (-0.11%) 4/3 (-0.11%) 4/3 (-0.11%)
Tritone 6 1.414 729/512 (0.68%) 17/12 (0.17%) 7/5 (-1.01%)
Perfect fifth 7 1.498 3/2 (0.11%) 3/2 (0.11%) 3/2 (0.11%)
Minor sixth 8 1.587 128/81 (-0.45%) 8/5 (0.79%) 8/5 (0.79%)
Major sixth 9 1.682 27/16 (0.34%) 5/3 (-0.90%) 5/3 (-0.90%)
Minor seventh 10 1.782 16/9 (-0.23%) 16/9 (-0.23%) 9/5 (1.02%)
Major seventh 11 1.888 243/128 (0.57%) 15/8 (-0.68%) 15/8 (-0.68%)
Octave 12 2.000 2/1 (0.00%) 2/1 (0.00%) 2/1 (0.00%)
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Formal Definitions

1 Assume that H = {f1, . . . , fk } is a rational harmony, f is the
minimum of H, and fi/f = ai/bi for 1 ≤ i ≤ k and coprime
positive integers ai and bi . Then h = lcm(b1, . . . , bk ) is
called relative periodicity.

2 Logarithmic periodicity = log2(h)
Rationales (cf. Langner, 1997):

logarithmic organisation of neuronal periodicity map (brain)
octave has frequency ratio 2 ; base-2 logarithm

3 Let T ′ be a tuning (ratio function), S = {s1, . . . , sn} a set of
n semitones, and H a measure of harmoniousness. Then,
the value of H may be smoothed, by averaging over the
shifted semitone sets of S:

H(S) =
1
n

∑
i∈S

H(T ′(Si))

Reference: Stolzenburg, F. (2015). Harmony perception by periodicity
detection. Journal of Mathematics and Music.
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Approaches and Discussion

Properties of Periodicity:
Harmonic overtones do not change periodicity.
Smoothing improves results.
Logarithmic periodicity for whole chromatic scale (12-TET):

log2(h) ≈ 7.4 < 8

= #octaves representable in neuronal periodicity map.

Limitations:
Empirical ratings take average over all participants ;
individual differences (culture, familiarity, training, etc.) are
neglected.
Harmony is taken out of context (musical piece, history).
Studies focus on Western scales (twelve-tone system).

12 / 19



Harmony
Perception by

Periodicity
Detection

Frieder
Stolzenburg

Introduction

The
Periodicity-
Based
Method

Results and
Evaluation
Approaches and
Discussion

Consonance
Rankings: Dyads

Consonance
Rankings: Triads

Consonance
Rankings: Chords

Consonance
Rankings: Scales

Conclusions

Consonance Rankings: Dyads

Dyads
Interval Emp. rank Roughness Sonance factor Similarity Rel. periodicity
Unison {0, 0} 1 2 (0.0019) 1-2 (1.000) 1-2 (100.00%) 1-2 (1.0)
Octave {0, 12} 2 1 (0.0014) 1-2 (1.000) 1-2 (100.00%) 1-2 (1.0)
Perfect fifth {0, 7} 3 3 (0.0221) 3 (0.737) 3 (66.67%) 3 (2.0)
Perfect fourth {0, 5} 4 4 (0.0451) 4 (0.701) 4 (50.00%) 4-5 (3.0)
Major third {0, 4} 5 6 (0.0551) 5 (0.570) 6 (40.00%) 6 (4.0)
Major sixth {0, 9} 6 5 (0.0477) 6 (0.526) 5 (46.67%) 4-5 (3.0)
Minor sixth {0, 8} 7 7 (0.0843) 7 (0.520) 9 (30.00%) 7-8 (5.0)
Minor third {0, 3} 8 10 (0.1109) 8 (0.495) 7 (33.33%) 7-8 (5.0)
Tritone {0, 6} 9 8 (0.0930) 11 (0.327) 8 (31.43%) 9 (6.0)
Minor seventh {0, 10} 10 9 (0.0998) 9 (0.449) 10 (28.89%) 10 (7.0)
Major second {0, 2} 11 12 (0.2690) 10 (0.393) 11 (22.22%) 12 (8.5)
Major seventh {0, 11} 12 11 (0.2312) 12 (0.242) 12 (18.33%) 11 (8.0)
Minor second {0, 1} 13 13 (0.4886) 13 (0.183) 13 (12.50%) 13 (15.0)
Correlation r .967 .982 .977 .982

Empirical ranks: Malmberg (1918); Schwartz et al. (2003)
High correlation with empirical results ; r > .9.
Many approaches yield good correl. results for intervals:

sonance factor: Hofmann-Engl (2004)
percentage spectral similarity: Gill and Purves (2009)
roughness: Hutchinson and Knopoff (1978)
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Consonance Rankings: Triads

Common Triads
Chord class Emp. rank Roughness Instability Similarity Rel. periodicity
Major {0, 4, 7} 1 (1.667) 3 (0.1390) 1 (0.624) 1-2 (46.67%) 2 (4.0)

{0, 3, 8} 5 (2.889) 9 (0.1873) 5 (0.814) 8-9 (37.78%) 3 (5.0)
{0, 5, 9} 3 (2.741) 1 (0.1190) 4 (0.780) 5-6 (45.56%) 1 (3.0)

Minor {0, 3, 7} 2 (2.407) 4 (0.1479) 2 (0.744) 1-2 (46.67%) 4 (10.0)
{0, 4, 9} 10 (3.593) 2 (0.1254) 3 (0.756) 5-6 (45.56%) 7 (12.0)
{0, 5, 8} 8 (3.481) 7 (0.1712) 6 (0.838) 8-9 (37.78%) 10 (15.0)

Susp. {0, 5, 7} 7 (3.148) 11 (0.2280) 8 (1.175) 3-4 (46.30%) 5 (10.7)
{0, 2, 7} 6 (3.111) 13 (0.2490) 11 (1.219) 3-4 (46.30%) 9 (14.3)
{0, 5, 10} 4 (2.852) 6 (0.1549) 9 (1.190) 7 (42.96%) 6 (11.0)

Dim. {0, 3, 6} 12 (3.889) 12 (0.2303) 12 (1.431) 13 (32.70%) 12 (17.0)
{0, 3, 9} 9 (3.519) 10 (0.2024) 7 (1.114) 10-11 (37.14%) 11 (15.3)
{0, 6, 9} 11 (3.667) 8 (0.1834) 10 (1.196) 10-11 (37.14%) 8 (13.3)

Augm. {0, 4, 8} 13 (5.259) 5 (0.1490) 13 (1.998) 12 (36.67%) 13 (20.3)
Correlation r .352 .698 .802 .846

Empirical ranks: Johnson-Laird et al. (2012)
Highest correlation with empirical results in contrast to
others including instability (Cook and Fujisawa, 2006).
Logarithmic periodicity even correlates well to ordinal
ratings ∼ logarithmic periodicity map in the brain.
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Consonance Rankings: Chords

G4444
(a) pentachord
¯ ¯ ¯ ¯ ¯

(b) pentatonics
¯ ¯ ¯ ¯ ¯

(c) blues scale
¯ ¯ 6¯ 4¯ ¯ ¯ ¯ 6¯

consider pentachord Emaj7/9

standard in jazz music

classically built from a stack of thirds

highest ranked harmony with 5 out of 12 tones

may be understood as the superposition of triads E and B

tonic-dominant relationship according to classical
harmony theory ; chord progressions

all shown harmonies rank among the top 5% in their
respective tone multiplicity category

15 / 19



Harmony
Perception by

Periodicity
Detection

Frieder
Stolzenburg

Introduction

The
Periodicity-
Based
Method

Results and
Evaluation
Approaches and
Discussion

Consonance
Rankings: Dyads

Consonance
Rankings: Triads

Consonance
Rankings: Chords

Consonance
Rankings: Scales

Conclusions

Consonance Rankings: Scales

Heptatonic Scales (Church Modes)
Mode Semitones Emp. rank Similarity Log. periodicity Log. periodicity

(Rational tuning #1) (Rational tuning #2)
Ionian {0, 2, 4, 5, 7, 9, 11} 1 (0.83) 3 (39.61%) 1 (6.453) 1 (5.701)

Mixolydian {0, 2, 4, 5, 7, 9, 10} 2 (0.64) 6 (38.59%) 3 (6.607) 4 (5.998)
Lydian {0, 2, 4, 6, 7, 9, 11} 3 (0.58) 5 (38.95%) 2 (6.584) 2 (5.830)
Dorian {0, 2, 3, 5, 7, 9, 10} 4 (0.40) 2 (39.99%) 4 (6.615) 3 (5.863)
Aeolian {0, 2, 3, 5, 7, 8, 10} 5 (0.34) 4 (39.34%) 5 (6.767) 7 (6.158)

Phrygian {0, 1, 3, 5, 7, 8, 10} 6 (0.21) 1 (40.39%) 6 (6.778) 5 (6.023)
Locrian {0, 1, 3, 5, 6, 8, 10} 7 7 (37.68%) 7 (6.790) 6 (6.033)

Correlation r .036 .964 .786

Empirical ranks: Temperley and Tan (2013)
Periodicity also works for scales,
although tones do not sound simultaneously.
Church modes are in the very front ranks of 462 scales
with 7 out of 12 tones (for rational tunings).
Percentage similarity (Gill and Purves, 2009) does not
predict order, but is applicable to arbitrary tone scales.
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Summary and Future Work

Summary:
Harmony perception can be explained well by considering
the periodic structure of harmonic sounds.
Computational model shows highest correlation with
empirical results for harmonies in broad sense (dyads,
triads, scales).
Conclusion: There is a strong neuroacoustical and
psychophysical basis for harmony perception including
chords and scales.
Correlation with neurophysiological data (Lee et al., 2015;
Bidelman and Krishnan, 2009).

Further Information:
http://ai-linux.hs-harz.de/fstolzenburg/harmony/
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Motivation

An acoustic stimulus, e.g. a musical harmony, is
transformed highly non-linearly during the hearing
process:

ear: combination tones in inner ear (differences)
brain: autocorrelation mechanism (Langner, 1997, 2015)

In brainstem response, periodicity pitch (i.e. missing
fundamental) is physically present in frequency spectrum
(EEG studies by Lee et al., 2009, 2015).
Research question: How can this happen?
Running example: perfect fifth (A2–E3, 110 and 166 Hz)

Waveform

time (ms)
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Auditory Brainstem Responses

Lee et al. (2009, 2015) measure auditory brainstem
responses to musical intervals (electric piano sound):

perfect fifth: A2–E3, 110–166 Hz, frequency ratio 3:2
highest response in brainstem at about 55.3 ≈ 110/2 Hz
minor seventh: F#2–E3, 93–166 Hz, frequency ratio 9:5
highest response in brainstem at about 18.5 ≈ 93/5 Hz

In both cases, the additionally occurring frequency
coincides very well with the periodicity pitch frequency.
Frequency Spectra: (Lee et al., 2015, Fig. 1+5)

Stimulus Response

frequency (Hz) frequency (Hz)
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Neuronal Model by Langner (1997, †2016)

Trigger neurons in cochlear nucleus
transfer signals without significant
delay (spike trains).

Oscillator neurons with intrinsic
oscillation n · T , base period
T = 0.4 ms, n ≥ 2.

Integrator neurons in cochlear nucleus
transfer periodic signals with
(significant) delay.

Coincidence neurons (auditory
midbrain) respond best when delay is
compensated by signal period.

Summary: Periodicity can be detected
in the brain (by comb-filtering).

oscillator

neurons

integrator

neurons

trigger

neuron

neuron

coincidence

inner ear

cochlea

orthogonal logarithmic
tonotopic pitch and periodicity map

cognitive

process

consonance/dissonance perception

sound
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Possible Explanations

What are the relevant factors that lead to the occurrence of
the periodicity pitch in the response spectrum of a signal?
Reasons for periodicity detection may be:

1 autocorrelation and phase-locking (Langner, 2015)
2 distortion ; combination tones (Lee et al., 2015)

f1 − k · (f2 − f1), given frequencies f1 < f2 and small k
3 spiking: transformation of input signal into pulse trains

; maximal amplitude is limited by fixed uniform value

Explanations (except last one) introduce too few or too
many combination tones in the frequency spectrum.
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Spiking Neuronal Activity

In the brain, spikes are created when the action potential
crosses some threshold.
This is adopted in theoretical model proposed here:
Transform input (blue) as in artificial neural networks.
A sigmoidal activation function, e.g. the logistic function,
the hyperbolic tangent, or simply the sign function, is
applied to the input (= signal over time).
By this, the input signal is transformed into a rectangular
pulse train with uniform maximal amplitude (red).
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Frequency Spectrum

Frequency spectra of perfect fifth:
original signal (blue)
its amplitude-limited response (red)

Periodicity pitch occurs physically in the real brainstem
response (Lee et al., 2015, Figure 5) and in frequency
spectrum predicted by our model.
Key point: non-linear, sigmoidal activation
Complex neural model or analysis (Lerud et al., 2014) is
not required.
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Results

Stimulus is transformed in the brain, distortion is not heard
however, but can be simulated

� perfect fifth – stimulus � � perfect fifth – distorted �

The response spectra explicitly contain as expected in
addition to the original spectrum the periodicity pitch
frequency, not arbitrary combination tones.

The (new) peaks in the response spectrum are sharper
the more pulse-like the transformed input is.

The peaks at the periodicity pitch frequencies are more
salient for more consonant harmonies. In this case, the
periodicity pitch frequency is comparatively high
(∼ relative periodicity low).
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Model Computation

Assume: input signal = sequence of rectangular pulses,
uniform amplitude (cf. Ebeling, 2007, 2008).
For the perfect fifth, both component signals coincide after
an overall period of approximately 18.1 ms (blue).
The amplitude is not uniform at this point.
Whenever two pulses of different frequencies coincide, it
has to be compensated (red).
Thus periodicity pitch present in amplitude-limited signal.
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Neural Network Model

Recurrent artificial neural networks
can generate periodic waveforms
and also explain their perception.

Artificial neurons may be recursively
connected, activation of each
neuron changes over time.

If neurons x1, . . . , xn are connected
to neuron y, then:

y(t+τ) = g
(
w1x1(t)+· · ·+wnxn(t)

)
w1, . . . ,wn are weights,
τ discrete time constant, and
g the activation function.

Two neurons suffice to generate (co)sine wave:
just use 2D rotation matrix (cf. Stolzenburg et al., 2018)
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Final Remarks

Summary: Most important factor during the neural
transformation for periodicity detection seems to be the
spiking with uniform, limited amplitude.

That the periodicity pitch appears in the response
spectrum and not arbitrary difference tones can be
reproduced by Fourier analysis of amplitude-limited pulse
trains (Matlab/Octave implementation).

Reference: Frieder Stolzenburg. Periodicity detection by
neural transformation. In Edith Van Dyck, editor, Proc.
ESCOM 2017 – 25th Anniversary Conference of the
European Society for the Cognitive Sciences of Music, pp.
159–162, Ghent, Belgium, 2017. IPEM, Ghent University.
http://www.escom2017.org/wp-content/uploads/
2016/06/Stolzenburg-et-al.pdf.
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Research Questions

Planned Work

More extensive studies and comparisons with real
brainstem responses have to be done, not only
comparison with empirical psychological experiments.
PhD project HarPer – Harmony Perception (Maria Heinze),
joint with Maastricht University, Netherlands, Faculty of
Psychology and Neuroscience, since October 2017.
EEG and fMRI studies about temporal and spatial activity
in the brain during harmony perception are planned with
complex harmonic sensations (≥ 2 tones in harmony).
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Research Questions

Research Questions

1 Can the results of the EEG experiments for dyads by Lee
et al. (2009, 2015) be reproduced?

2 Can the periodicity-based method (Stolzenburg, 2015) be
confirmed by EEG experiments for dyads and triads?

3 Where in the brain does harmony perception take place?
Are pitch and periodicity orthogonal dimensions in the
tonotopic map in the brain?

Orthogonality of tonotopy and peri-
odotopy in the inferior colliculus of the
gerbil (mouse) demonstrated using a
radiographic (2-deoxyglucose) tech-
nique (cf. Langner, 2015, Fig. 10.5).
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Research Questions

Research Questions (continued)

Present participants isolated corresponding periodicity
pitch frequencies in fMRI experiments.

� major triad – stimulus #77 � � periodicity pitches – undertones of D6 �

4 How does harmony perception work in general? Can it be
modeled by neural network models, e.g. recurrent
predictive neural networks (Stolzenburg et al., 2018)?

Thank you very much for your attention!

audio/major2-stim77.wav
audio/undertone-sequence.wav

