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Abstract The term cognitive computing refers to new hard-
ware and/or software that mimics the functioning of the hu-
man brain. In the context of question answering and com-
monsense reasoning this means that the reasoning process
of humans shall be modeled by adequate technical means.
However, since humans do not follow the rules of classical
logic, a system designed to model these abilities must be
very versatile. The aim of the CoRg project (Cognitive Rea-
soning) is to successfully complete a reasoning task with
commonsense reasoning. We address different benchmarks
with focus on the COPA benchmark set (Choice of Plausi-
ble Alternatives). Since humans naturally use background
knowledge, we have to deal with large background knowl-
edge bases and must be able to reason with multiple input
formats and sources in the CoRg system, in order to draw
explainable conclusions. For this, we have to find appropri-
ate logics for cognitive reasoning. For a successful reason-
ing system, nowadays it seems to be important to combine
automated reasoning with machine learning technology like
recurrent neural networks.

Keywords cognitive reasoning - commonsense reasoning -
automated reasoning - machine learning

1 Introduction

Cognitive reasoning is a sub-discipline of artificial intelli-
gence that attempts to model the way people draw conclu-
sions in everyday situations. However, since humans do not
follow the rules of classical logic during commonsense rea-
soning, a system designed to model these abilities must be
very versatile. Humans are able to draw meaningful conclu-
sions despite incomplete, possibly even inconsistent knowl-
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edge. They can deal with norms and conflicting norms and
are able to rethink their conclusions as new information ar-
rives. The CoRg project has the ambitious goal to develop
a system for cognitive reasoning. The main challenges that
the project addresses are:

1. Gathering and using background knowledge: Cog-
nitive reasoning requires enormous amounts of back-
ground knowledge describing everyday experience hu-
mans use for reasoning. This background knowledge
has to be constructed by combining appropriate sources.
Furthermore, the cognitive system must contain mecha-
nisms to deal with the sheer size of this knowledge.

2. Reasoning with multiple formats: Logical reasoning
alone is not sufficient to model human reasoning. A cog-
nitive system has to be able to handle natural language
and deliberate about different conclusions which may
be conflicting. We achieve this by integrating machine
learning algorithms.

3. Finding appropriate logics for cognitive reasoning:
Logics used for cognitive reasoning have to capture the
versatility of human reasoning. A system for cognitive
reasoning should therefore include a combination of dif-
ferent techniques and logics.

4. Drawing explainable conclusions: It is not sufficient
for a system to provide only a yes or no answer. In order
to be comprehensible, the responses of a system must be
accompanied by a justification.

In order to evaluate the CoRg system, we use bench-
marks from commonsense reasoning. Numerous bench-
marks have been presented in recent years that are suitable
for testing a system for cognitive reasoning. The examples
range from benchmarks that require causal reasoning in ev-
eryday situations, such as the COPA Challenge (Choice of
Plausible Alternatives) [22], to benchmarks that address dif-
ficult cases of pronoun disambiguation, such as the Wino-
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1: My body cast a shadow over the grass.
What was the CAUSE of this?

Al: The sun was rising.

A2: The grass was cut.

18: It got dark outside.

What happened as a RESULT?

Al: Snowflakes began to fall from the sky.
A2: The moon became visible in the sky.

Figure 1 Problem 1 and 18 from the COPA benchmark set.

grad Schema Challenge [14], to benchmarks that focus on
human relationships and emotions, such as the Triangle-
COPA Challenge [16]. Although we initially concentrate on
the COPA Challenge in the CoRg project, the same approach
can also be applied to other commonsense reasoning bench-
marks. However, it is expected that problems like the Wino-
grad Schema Challenge, where linguistic knowledge plays
an important role, will produce less good results.

The rest of this article is structured as follows: Sect. 2
introduces the structure of the cognitive computing system
currently being developed in the CoRg project. Sect. 3 to 6
provide details on the four challenges mentioned above and
present the solutions sought in the CoRg project. In Sect. 7
we present what we have learned so far from tackling the
challenges, before we end up with conclusions in Sect. 8.

2 The Structure of the CoRg System

The objective of CoRg is to develop a system for cogni-
tive computing. It is an extension of the system described in
[7] and will be evaluated using benchmarks from the com-
monsense reasoning area. While we aim at being able to ad-
dress different benchmarks, we currently focus on the COPA
benchmark set (Choice of Plausible Alternatives) [22] con-
sisting of 1,000 problems. We use the 500 development ex-
amples as training and validation set and the 500 test ex-
amples as test set. The COPA problems have a common
scheme, consisting of a sentence, describing a situation, to-
gether with a question and two possible answers to choose
from (cf. Fig. 1). They are split evenly into the categories
cause and result, indicating the relationship between the
question and the answer. Forward causal reasoning is nec-
essary for the problems in the result category (problem 18
in Fig. 1), backward causal reasoning for the problems of
the cause category (problem 1 in Fig. 1).

We now describe the structure of the CoRg system ex-
emplarily by means of the processing of a task from the
COPA problem set. Given the task, a variety of steps is
performed, as depicted in Fig. 2. The first step within the
CoRg system is to transform each natural language sentence,
i.e., the problem description and both answers, into a first-
order logic formula using KNEWS [2], a tool that performs

semantic parsing including some form of pronoun disam-
biguation, word sense disambiguation, and entity linking.
Predicate symbols used in the formulae created by KNEWS
correspond to words (e.g. nouns, verbs and adjectives) of the
original text. Besides this transformation, KNEWS together
with WordNet [17] also performs word-sense disambigua-
tion and provides a so-called synsetr ID, that is a grouped
set of cognitive synonyms for every meaningful word (e.g.
nouns and verbs) occurring in the COPA problem. For each
synset, both hyponyms and hypernyms, also taken from
WordNet, are determined. For the first-order logic formula
produced by KNEWS and the determined hyponyms and hy-
pernyms, the CoRg system searches for relevant background
knowledge within large knowledge bases like SUMO [19],
Adimen-SUMO [ 1], ResearchCyc [13], YAGO [26] or Con-
ceptNet [24].

The gathered information together with the logical rep-
resentation of the original text is then fed into Hyper. Hy-
per [3] is an automated theorem prover based on the E-
hyper tableau calculus. Hyper receives the information for
each question-answering task at once, not sequentially as the
text. Because of the built-in first-order logic calculus, it per-
forms monotonic reasoning. Yet it can deal with incomplete
knowledge by constructing models which are processed fur-
ther in the subsequent steps. So, for satisfiable problems,
Hyper is able to construct models. In the case of a time-out,
the output contains everything Hyper was able to derive so
far. We call this output of Hyper a partial model. In the next
step of the CoRg system, the Hyper’s output is used as an in-
put to several machine learning procedures together with the
unaltered natural language sentences from the tasks and the
word embeddings Numberbatch from ConceptNet [24]. It is
planned to generate an explanation for the given answer us-
ing the Hyper’s output belonging to the chosen answer after
this last step.

3 Gathering and Using Background Knowledge

During reasoning, humans naturally use background knowl-
edge describing everyday experiences. That suggests that
background knowledge plays a crucial role for cognitive
computing systems as well. In the CoRg project, the follow-
ing types of background knowledge are used or are planned
to be used:

— lexical databases: WordNet

— first-order logic knowledge bases (like Adimen-SUMO)
or first-order logic versions to higher-order knowledge
bases (like SUMO, ResearchCyc, YAGO).

— knowledge graphs (ConceptNet, BabelNet') and onto-
logical knowledge bases given in RDF or OWL format.

! https://babelnet.org/, accessed: 11-June-2019
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Figure 2 The CoRg system.
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Figure 3 First-order logic formula for the problem description of
COPA problem 18 given in Fig. 1.

— word embeddings (currently from ConceptNet Number-
batch)

As the enumeration illustrates, we define the concept of
background knowledge very broadly, so that knowledge
bases given by different logics, knowledge graphs, lexi-
cal databases and also word embeddings are included. All
sources for background knowledge are already existing
sources that were not generated specifically for the task to
be solved. This point is important, because although manual
coding of background knowledge can produce very good re-
sults on known problems, it fails in unknown domains.
WordNet includes linguistic knowledge, and is used to
specify formulae that introduce hypernyms and hyponyms
of words occurring in the problem. For problem 18 in Fig. 1,
KNEWS analyzes the natural language sentences and deter-
mines that “dark” belongs to the same WordNet synset as the
word “night”. WordNet provides the information that “time
period” is a hypernym and “weeknight” is a hyponym of
“dark”. From this we generate the following formulae:

Vx (dark(x) <> night(x))
Vx (night(x) — timeperiod(x))
Vx (weeknight(x) — night(x))

Although this is undoubtedly important background knowl-
edge, it does not help to solve the problem as it requires to
realize that there is a stronger causal connection between
dark and the visibility of the moon than between dark and
the occurrence of snowflakes. However, this cannot be de-
termined only using WordNet, since it contains only taxo-
nomic knowledge. Therefore, additional background knowl-
edge from other sources like first-order logic knowledge
bases comes to use.

One problem that occurs when selecting and integrat-
ing background knowledge is the use of different vocabu-
laries. For example, in SUMO the term “snowflake” does
not occur. Instead the terms “ice” and “snowing” are used.
Therefore formulae have to be generated which connect the
terms from the COPA problem with the terms in SUMO.
We call these formulae bridging formulae. For SUMO and
many other knowledge bases, a mapping of the terms used
in the knowledge base to WordNet synsets exists. This map-
ping can be used to create the bridging formulae. For exam-
ple, the WordNet mapping in SUMO contains the informa-
tion that the WordNet synset “snowflake” is a subclass of the
SUMO terms “ice” and “snowing”. From this, we generate
the following bridging formula:

Vx (snowflake(x) — instance(x, ice)

Vx (snowflake(x) — instance(x,snowing)

Another problem with the use of existing background knowl-
edge bases is the size of these knowledge bases: SUMO,



ResearchCyc and YAGO are too large to be fully processed
by an automated theorem prover. Therefore, for each COPA
problem, only that part of the knowledge base that contains
information relevant to the problem is considered. The se-
lection of the part relevant for a problem is carried out with
the help of so-called selection techniques. For instance, SInE
(SUMO Interface Engine) [10] is a partitioning method used
by many theorem provers. Given a large theory and a con-
jecture, SInE first determines frequencies of symbols in the
knowledge base and then uses this information to select ax-
ioms which are relevant to answer the conjecture. By turn-
ing the bridging formulae and the formulae generated from
WordNet into a conjecture, SInE can be used to select back-
ground knowledge relevant for the COPA problem at hand.
More precisely, the CoRg system will use a SInE variant
enriched with word embeddings. This leads to the fact that
in our example not only knowledge is selected for the term
“night” but also for terms which are similar to “night” like
“after sunset”. To determine this similarity, the ConceptNet
Numberbatch word embeddings are used.

In addition to first-order logic knowledge bases and
WordNet, knowledge graphs will be used as background
knowledge. The first knowledge graph to be used explic-
itly (i.e. not only within Numberbatch) will be ConcepNet.
Specifically, it is planned to use ConceptNet to enrich the
selected background knowledge. Referring to COPA prob-
lem 18 shown in Fig. 1, the knowledge selected with SInE
contains information about the terms moon and nighttime,
but there is no connection between these terms in the se-
lected formulae. ConceptNet, on the other hand, contains the
following triple:

moon — related to — nighttime

We plan to generate formulae from ConceptNet triples con-
necting terms in the selected background knowledge. In the
above example, we will generate the formula

Vx (moon(x) — Jy (relatedTo(x,y) A nighttime(y)))

which connects the terms moon and nighttime.

All in all, the background knowledge for a given prob-
lem consists of the formulae generated from WordNet, the
bridging formulae, the formulae selected from the first-order
logic knowledge bases, and the formulae generated from
ConceptNet. Note that this collection of background knowl-
edge is done for each problem only once. This knowledge is
combined and passed to the automated theorem prover Hy-
per together with the formula describing the COPA problem.
Hyper is then used to perform inferences that can be found
in Hyper’s output. Note that we do not expect Hyper to find
a proof, because the background knowledge most likely is
incomplete. Hyper’s output is then analyzed using machine

2 http://conceptnet5.media.mit.edu, accessed: 11-June-
2019

learning techniques to determine which of the two alterna-
tive answers the inferences point to (cf. Sect. 4).

4 Reasoning with Multiple Formats

Logical reasoning alone is not sufficient to handle com-
monsense reasoning tasks. That is why we enhance the
CoRg system with machine learning algorithms to close the
gap between the derived facts and answering the common-
sense tasks. Within commonsense reasoning tasks, recurrent
networks with LSTM (long short-term memory) [9] are a
promising strategy. They have a success rate of up to 84%
in the SemEval benchmark [21]. However, since we want
to use the derived facts from the logical model provided by
Hyper, this approach cannot be used directly as is. Recurrent
networks are used to process sequential information. While
language is an example of sequential information, logical
models are not. In recurrent networks the order is relevant.
Thus one of the challenges to integrate neural networks into
the CoRg system is the coding of the models with word em-
beddings such that they fit into a neural network. In the fol-
lowing, we briefly describe our approach with neural net-
works, a more detailed explanation can be found in [23].

We designed several networks with the Keras frame-
work® to calculate which of the answers is more likely. Each
of them have multiple inputs, for each textual input (ques-
tion and both answers) one network to encode them, and an-
other one to bring them together. The output is a vector with
a likelihood for each answer. Also, every encoding network
has a word embedding layer using the word embedding from
ConceptNet Numberbatch. The difference between the net-
works is in the way they encode the question and answers in
the input.

In a naive approach, we just interpret the model as a text
sequence and feed it into the network. However, as the logi-
cal model is rather large (up to 1.4 million lines), the calcu-
lation time explodes. Therefore we drop all symbols which
are not covered in the word embedding as well as every du-
plicate statement in the Hyper model. Another approach is
just to count the frequencies of the symbols in the models.
This will greatly reduce the input size. Also, we can feed
the original unaltered text of the benchmark set (question
and two answer candidates) into an additional triplet of in-
put layers. This will be done optionally to evaluate whether
the logical model can improve the accuracy. As this input is
sequential information we can use the state-of-the-art recur-
rent networks for these additional layers.

Putting the different parts of the system from Sect. 2 and
Fig. 2 together, the computation times for one sentence (e.g.
the question part) on a regular laptop are as follows:

3 https://keras.io/, accessed: 11-June-2019
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system part time in seconds

KNews 6-9
WordNet 0.5-5.5
Bridging formula 0.02
Selection of background knowledge 1.46
Hyper < 0.1

Likelihood computation < 0.1

Note that Hyper is started with a timeout of 60 seconds,
however Hyper rarely runs into a timeout. Also, there are
multiple not recurring tasks which occur only once per run:
The loading of word embeddings, e.g., takes around 30 sec-
onds. All in all, the preparation of the models for one task
(all three sentences) without one-time loading tasks takes
approximately 30-40 seconds. Training the network once
with the 500 logical models of the training set takes 7-8.5
minutes, while the prediction of 500 examples of the test set
takes around 2 seconds.

5 Finding Appropriate Logics for Cognitive Reasoning

Cognitive science research lists various problem sets to-
gether with data from experiments on human performance
in reasoning tasks. To model the various aspects of human
reasoning observed in these experiments, other logics be-
sides first-order logic can be used. The difference in the
performance of humans and computers for some reason-
ing tasks can be explained with mental models [4, 1 1]. For
causal reasoning, mental models can be represented as sets
or lists [12].

One important aspect where human reasoning differs
from classical logic is the fact that we often derive conclu-
sions under the assumption that nothing abnormal is known,
i.e., that we do not have evidence that the conclusion is false.
In consequence, human reasoning often is defeasible. It hap-
pens frequently that contrary evidence defeats our earlier
reasoning. We intend to model these non-monotonic and de-
feasible aspects of knowledge by using commonsense non-
monotonic reasoning techniques. In this context, first defea-
sible logic can be considered. It allows us to compare ar-
guments with respect to the specificity criterion. From the
preceding RatioLog project [8], an implementation of speci-
ficity is available [27]. Second, when modeling human rea-
soning, we have to act on the assumption of both incomplete
and inconsistent knowledge. Therefore, ranking theories of
knowledge from certain to vague knowledge [25] can also
be taken into consideration here.

Within the TriangleCOPA challenge, norms play an im-
portant role, because humans normally expect their fellow
human beings to comply with certain social norms. There-
fore, normative knowledge can be used to model knowledge
about met and unmet expectations as well. The study of log-
ical systems for formalizing normative statements is called

deontic logic. There are a lot of approaches in the deontic
logic literature concerning formalisms for modeling norma-
tive knowledge [5]. We plan to make use of such a formal-
ism to formalize normative statements and knowledge about
expectations.

The combination of normative, defeasible, and classical
reasoning shall be investigated further. For a starting point,
see [20]. The Hyper theorem prover can be used to reason on
commonsense reasoning problems together with first-order
logic background knowledge. Since this background knowl-
edge usually is incomplete, it is likely that for most exam-
ples the prover will not be able to find a proof. Nevertheless,
output of the prover can contain valuable information when
trying to construct an answer. Therefore, we will consider
additional techniques to determine an answer from the out-
put of the prover. One possibility to deal with the fact that the
prover will not provide a proof, is to work with the models
the prover constructed,which we already do. For satisfiable
problems, Hyper is able to generate models, as mentioned
earlier. To determine the right answer from the models, ma-
chine learning techniques are applicable.

6 Drawing Explainable Conclusions

The system developed in the CoRg project will not only pro-
vide a yes or no answer. In order to make the answers com-
prehensible, it is planned to present a justification for the
given answer. As shown in Fig. 2, the more plausible al-
ternative is determined based on the (possibly partial) mod-
els generated by the theorem prover using machine learn-
ing. The model associated with the chosen answer represents
statements that could be inferred by the theorem prover. To-
gether with the formulae used by the theorem prover dur-
ing model creation, this represents valuable information. We
plan to use word embeddings to first determine the state-
ments in the model that are close to the selected answer and
then extract the formulae used to derive these statements.
From these formulae we then try to generate an explanation
for the decision made.

7 Lessons Learnt so far

Insufficient Background Knowledge. Initial experiments us-
ing WordNet and the TPTP version of OpenCyc have shown
that in many cases not enough relevant background knowl-
edge is available. Since theorem provers can only make their
inferences on the basis of background knowledge, the result
is that the inferences of the theorem provers are not very
helpful for solving the COPA problem. We try to solve this
issue by using multiple sources of background knowledge.
To do this, we are currently working on the inclusion of
SUMO and Adimen-SUMO as background knowledge and



Karen was assigned a roommate her first year of
college. Her roommate asked her to go to a mnearby
city for a concert. Karen agreed happily. The show
was absolutely exhilarating.

Al: Karen became good friends with her roommate.
A2: Karen hated her roommate.

Figure 4 A Story Cloze Test example.

will investigate whether it is beneficial to include Research-
Cyc, YAGO, BabelNet, and CausalNet* [15].

Too few training data. Working with neural networks re-
quires a huge amount of training samples, however in the
COPA benchmark set can only make use of 500 examples
as training set. There should be more training examples. To
cope with this problem we want to integrate the Story Cloze
Test with the ROCStories Corpora [18]. One ROCStory is
a five-sentence story, while the associated Story Cloze Test
takes the first four sentences as the given situation, where
the logical consequence has to be predicted from two op-
tions. The right choice is the original fifth sentence from the
ROCStory. An example of a Story Cloze Test is given in
Fig. 4. Currently there exist 98,159 ROCStories and 3,744
Story Cloze Tests. The advantage of this dataset is the simi-
larity in structure and dependency between question and an-
swer to the COPA benchmark set, making it easy to adapt
and use the CoRg system.

Issues with Matching Symbols. Sometimes a symbol from
the problem does not appear in the background knowledge.
In these cases, no suitable background knowledge can be
selected, which in turn means that Hyper cannot perform
any inferences. This problem can be avoided by selecting
knowledge about symbols similar to the symbols used in the
conjecture when selecting background knowledge. In order
to achieve this, we have developed a version of SInE that
includes word embedding. Experiments with this extended
SInE version are still pending.

8 Conclusion and Future Work

In this paper, we presented our work in progress in the
project CoRg — Cognitive Reasoning. Cognitive reasoning
aims at modeling the human thinking and reasoning pro-
cess. We evaluate our system using a commonsense reason-
ing benchmark set. We integrate various large knowledge
bases into the system which serve as the information source
for logical reasoning. Given the large size, because of the in-
completeness and inconsistency of those knowledge bases,
it is difficult to derive a complete proof with relying on the
logical derivation processes alone.

4 https://cs-zyluo.github.io/CausalNet/, accessed: 11-
June-2019

To close the gap between the derived facts and answer-
ing the commonsense reasoning task, we additionally apply
machine learning algorithms. Machine learning performs
well on those benchmarks but lack the ability to properly
explain the reasoning process. By combining the logical and
machine learning techniques we hope to build both a well
performing and explainable artificial intelligence.

So far we implemented a first prototype of the CoRg
system, using KNEWS, WordNet, Hyper, ConceptNet Num-
berbatch and neural network techniques and evaluated it on
COPA. Currently we are working on integrating Adimen-
SUMO and SUMO as background knowledge. The final
system will also make use of other ontologies such as Re-
searchCyc, YAGO and ConceptNet. These different sources
of background knowledge will be designed as modules, for
easy interchangeability and thus performance comparabil-
ity. Furthermore we are working on enhancing our machine
learning techniques to efficiently encode our logical mod-
els for the use in neural networks. To adress explanability in
the neural network part, we plan to integrate a variant of the
symbolic networks introduced in [6].
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